series

Product Segments

- Industrial Motion

TiMOTION's MA2 series electric linear actuator was specifically designed for applications that face harsh working environments and require heavy-duty and durability. Its IP69K protection ensures it will withstand high-pressure water jets and the ingress of dust and other solid contaminants. The MA2 electric cylinder actuator also has optional Reed switches along the outer tube which allow users to adjust the stroke length. For improved control and accuracy of motion, the MA2 can be customized with many different feedback options depending on your application requirements. Example applications suitable for the MA2: Agricultural equipment such as spreaders, harvesters, grain handlers, combines, and tractors. Commercial and industrial applications such as commercial lawn mowers,
scrubbers and sweepers, material handling equipment and livestock ventilation systems.

General Features

Max. load
Max. speed at max. load
Max. speed at no load
Retracted length
IP rating
Certificate
Stroke
Output Signals

Voltage

Operational temperature range
Operational temperature range
8,000N (push); 4,000N (pull)
$5.5 \mathrm{~mm} / \mathrm{s}$
$52.5 \mathrm{~mm} / \mathrm{s}$
\geq Stroke +131 mm
IP69K
UL73, EMC
25~1000mm
Hall sensors, POT, Reed sensor on the outer tube
12 / 24 / 36 / 48V DC; 12 / 24 / 36 / 48V DC (thermal control)
$-30^{\circ} \mathrm{C} \sim+65^{\circ} \mathrm{C}$
$+5^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$

Drawing

Standard Dimensions (mm)

Load and Speed

CODE	Load (N)		Self Lock (N) Duty Cycle		Typical Current (A)		Typical Speed (mm/s)	
	Push	Pull	Moto		No Load 24V DC	With Load 24V DC	No Load 24V DC	With Load 24V DC
Motor Speed (5200RPM)								
F	1000	1000	1300	25\%	2.7	6.8	52.5	44.2
G	2000	2000	2600	25\%	2.4	6.7	25.5	21.8
H	4000	4000	5200	25\%	2.3	6.9	13.2	11.0
J	6000	4000	8000	25\%	2.0	5.8	6.6	5.8
K	8000	4000	8000	15\%	2.0	6.9	6.6	5.5

Note

1 Please refer to the approved drawing for the final authentic value.
2 This self-locking force level is reached only when a short circuit is applied on the terminals of the motor. All the TiMOTION control boxes have this feature built-in.

3 The current \& speed in table are tested with 24 V DC motor. With a 12 V DC motor, the current is approximately twice the current measured in 24 V DC. With a 36V DC motor, the current is approximately two-thirds the current measured in 24 V DC. Speed will be similar for all the voltages.

4 The current \& speed in table are tested when the actuator is extending under push load.
5 The current \& speed in table and diagram are tested with a stable 24V DC power supply.
6 Standard stroke: Min. $\geq 25 \mathrm{~mm}$, Max. please refer to below table.

CODE	Load (N)	Max Stroke (mm)
F	≤ 1000	1000
G	≤ 2000	800
H, J	≤ 6000	600
K	≤ 8000	200

Performance Data (24V DC Motor)

Motor Speed (5200RPM)

Speed vs. Load

Current vs. Load

MA2

Voltage	$1=12 \mathrm{~V}$ DC $\quad 5=24 \mathrm{VDC}$, thermal protector
	$2=24 \mathrm{~V}$ DC $6=12 \mathrm{VDC}$, thermal protector
	$3=36 \mathrm{~V}$ DC $7=36 \mathrm{VDC}$, thermal protector
	$4=48 \mathrm{~V}$ DC $\quad 8=48 \mathrm{~V}$ DC, thermal cutoff
Load and Speed	See page 2
Stroke (mm)	See page 2
Retracted Length (mm)	See page 5
Rear Attachment (mm) See page 6	1 = Aluminum casting, clevis U , slot 8.2 , depth 12.5 , hole 10.2 2 = Aluminum casting, clevis U , slot 8.2 , depth 15.0 , hole 10.2 3 = Aluminum casting, clevis U , slot 8.2 , depth 15.0 , hole 12.8 4 = Aluminum casting, clevis U, slot 8.2 , depth 15.0 , hole 12.2
Front Attachment (mm) See page 6	1 = Iron inner tube with punched hole, without slot, hole 10.2 2 = Iron inner tube with punched hole, without slot, hole 12.2 $3=$ Iron inner tube with punched hole, without slot, hole 12.8 4 = Aluminum casting, clevis U , slot 8.2 , depth 15.0 , hole 10.2 5 = Aluminum casting, clevis U, slot 8.2 , depth 15.0 , hole 12.2 $6=$ Aluminum casting, clevis U, slot 8.2 , depth 15.0 , hole 12.8 $\mathrm{K}=$ Rod end bearing, hole 12.8
Direction of Installation (Counterclockwise) See page 7	$1=90^{\circ} \quad 2=0^{\circ}$
Functions for Limit Switches	1 = Two switches at full retracted / extended positions to cut current 2 = Two switches at full retracted / extended positions to cut current + third one in between to send signal 3 = Two switches at full retracted / extended positions to send signal 6 = Two switches at full retracted / extended positions to cut current + send signal

Reed Sensor on the Outer Ttube	$0=$ Without	1 = Reed sensor*1	2 = Reed sensor*2	
Output Signal	$0=$ Without	1 = POT	5 = Hall sensor*2	
Connector	$2=$ Tinned leads			
See page 7				
Cable Length (mm)	1 = Straight, 500	$2=$ Straight, 1000	3 = Straight, 1500	4 = Straight, 2000
IP Rating	1 = Without	3 IP66	$8=$ IP69K	
	2 = IP54	$6=1 \mathrm{P} 66 \mathrm{D}$		
Manual Drive	1 = With			
T-Smart	$0=$ Without			

MA2 Ordering Key Appendix

Retracted Length (mm)

1. Calculate $A+B+C=Y$
2. Retracted length needs to \geq Stroke $+Y$

A. Rear/ Front Attachment

Front	Rear Attachment	
Attachment	1	$2,3,4$
$\mathbf{1 , 2 , 3}$	+131	+134
$\mathbf{4 , 5 , 6}$	+161	+164
K	+178	+181

C. Output Signal

0, 5
1 $+20$

B. Stroke (mm)	
25~150	-
151~200	-
201~250	+10
251~300	+20
301~350	+30
351~400	+40
401~450	+50
451~500	+60
501~550	+70
551~600	+80
601~650	+90
651~700	+100
701~750	+110
751~800	+120
801~850	+130
851~900	+140
901~950	+155
951~1000	+160

Rear Attachment (mm)

1 = Aluminum casting, clevis U , slot
8.2, depth 12.5 , hole 10.2

2 = Aluminum casting, clevis U , slot 8.2, depth 15.0, hole 10.2

3 = Aluminum casting, clevis U , slot 8.2, depth 15.0, hole 12.8

4 = Aluminum casting, clevis U , slot 8.2, depth 15.0 , hole 12.2

Front Attachment (mm)

1 = Iron inner tube with punched hole, without slot, hole 10.2

$\varnothing 10.2$

2 = Iron inner tube with punched hole, without slot, hole 12.2

6 = Aluminum casting, clevis U , slot 8.2, depth 15.0, hole 12.8

3 = Iron inner tube with punched hole, without slot, hole 12.8

$\mathrm{K}=$ Rod end bearing, hole 12.8

4 = Aluminum casting, clevis U , slot 8.2, depth 15.0 , hole 10.2

5 = Aluminum casting, clevis U , slot 8.2 , depth 15.0 , hole 12.2

MA2 Ordering Key Appendix

Direction of Rear Attachment (Counterclockwise)

$$
1=90^{\circ}
$$

$$
2=0^{\circ}
$$

Connector

$2=$ Tinned leads

Terms of Use

The user is responsible for determining the suitability of TiMOTION products for a specific application. TiMOTION products are subject to change without prior notice.

